IWOCE RC PBC 2019

 
Welcome to International Workshop on Open Component Ecosystems 

Air pollution 



Air pollution occurs when harmful or excessive quantities of substances including gases, particles, and biological molecules are introduced into Earth's atmosphere. It may cause diseases, allergies and even death to humans; it may also cause harm to other living organisms such as animals and food crops, and may damage the natural or built environment. Both human activity and natural processes can generate air pollution.

Air pollutant emission factors are reported representative values that attempt to relate the quantity of a pollutant released to the ambient air with an activity associated with the release of that pollutant. These factors are usually expressed as the weight of pollutant divided by a unit weight, volume, distance, or duration of the activity emitting the pollutant (e.g., kilograms of particulate emitted per tonne of coal burned). Such factors facilitate estimation of emissions from various sources of air pollution. In most cases, these factors are simply averages of all available data of acceptable quality, and are generally assumed to be representative of long-term averages.
Biological sources of air pollution are also found indoors, as gases and airborne particulates. Pets produce dander, people produce dust from minute skin flakes and decomposed hair, dust mites in bedding, carpeting and furniture produce enzymes and micrometre-sized fecal droppings, inhabitants emit methane, mold forms on walls and generates mycotoxins and spores, air conditioning systems can incubate Legionnaires' disease and mold, and houseplants, soil and surrounding gardens can produce pollen, dust, and mold. Indoors, the lack of air circulation allows these airborne pollutants to accumulate more than they would otherwise occur in nature.
The US EPA has estimated that limiting ground-level ozone concentration to 65 parts per billion, would avert 1,700 to 5,100 premature deaths nationwide in 2020 compared with the 75-ppb standard. The agency projected the more protective standard would also prevent an additional 26,000 cases of aggravated asthma, and more than a million cases of missed work or school. Following this assessment, the EPA acted to protect public health by lowering the National Ambient Air Quality Standards (NAAQS) for ground-level ozone to 70 parts per billion (ppb).
Diesel exhaust (DE) is a major contributor to combustion-derived particulate matter air pollution. In several human experimental studies, using a well-validated exposure chamber setup, DE has been linked to acute vascular dysfunction and increased thrombus formation.
In 2011, a large Danish epidemiological study found an increased risk of lung cancer for patients who lived in areas with high nitrogen oxide concentrations. In this study, the association was higher for non-smokers than smokers. An additional Danish study, also in 2011, likewise noted evidence of possible associations between air pollution and other forms of cancer, including cervical cancer and brain cancer.
The source of PM 2.5 differs greatly by region. In South and East Asia, pregnant women are frequently exposed to indoor air pollution because of the wood and other biomass fuels used for cooking which are responsible for more than 80% of regional pollution. In the Middle East, North Africa and West sub-Saharan Africa, fine PM comes from natural sources, such as dust storms. The United States had an estimated 50,000 preterm births associated with exposure to PM2.5 in 2010.
In general, there are two types of air quality standards. The first class of standards (such as the U.S. National Ambient Air Quality Standards and E.U. Air Quality Directive) set maximum atmospheric concentrations for specific pollutants. Environmental agencies enact regulations which are intended to result in attainment of these target levels. The second class (such as the North American Air Quality Index) take the form of a scale with various thresholds, which is used to communicate to the public the relative risk of outdoor activity. The scale may or may not distinguish between different pollutants.

 

 

 

 

 

 
 
 

Member of IWOCE RC PBC 2019:



Professor

Roberto Di Cosmo


Definitions of different ecosystems


Research Proposal


Software Component Definition


History alternative energy


Enabling  technologies


Renewable energy vs non-renewable energy


Relatively new concepts for alternative energy


Research alternative energy


Disadvantages alternative energy



RC PBC
  www.redcross-pbc.org