IWOCE RC PBC 2019

 
Welcome to International Workshop on Open Component Ecosystems 

Environmental impact of wind power 



While wind turbine installations may cover a large area, they are compatible with many land uses such as farming and grazing, as only small areas of turbine foundations and infrastructure are made unavailable for use.

Aesthetic aspects of wind turbines and resulting changes of the visual landscape can be significant. Conflicts arise especially in scenic and heritage protected landscapes. Siting restrictions (such as setbacks) have often been implemented to limit any intrusive environmental impacts.
Wind power consumes no water for continuing operation, and has near negligible emissions directly related to its electricity production. Wind turbines when isolated from the electric grid produce negligible amounts of carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen dioxide, mercury and radioactive waste when in operation, unlike fossil fuel sources and nuclear energy station fuel production, respectively.
However these relatively low pollution values begin to increase as greater and greater wind energy is added to the grid, or wind power 'electric grid penetration' levels are reached. Due to the effects of attempting to balance out the energy demands on the grid, from Intermittent power sources e.g. wind power (sources which have low capacity factors due to the weather), this either requires the construction of large energy storage projects, which have their own emission intensity which must be added to wind power's system-wide pollution effects, or it requires more frequent reliance on fossil fuels than the spinning reserve requirements necessary to back up more dependable sources. With the latter combination presently being the more common.
Turbines are not generally installed in urban areas. Buildings interfere with wind, turbines must be sited a safe distance ("setback") from residences in case of failure, and the value of land is high. There are a few notable exceptions to this. The WindShare ExPlace wind turbine was erected in December 2002, on the grounds of Exhibition Place, in Toronto, Ontario, Canada. It was the first wind turbine installed in a major North American urban city centre. Steel Winds also has a 20 MW urban project south of Buffalo, New York. Both of these projects are in urban locations, but benefit from being on uninhabited lake shore property.
Sovacool estimated that in the United States wind turbines kill between 20,000 and 573,000 birds per year, and has stated he regards either figure as minimal compared to bird deaths from other causes. He uses the lower 20,000 figure in his study and table (see Causes of avian mortality table) to arrive at a direct mortality rate per unit of energy generated figure of 0.269 per GWh for wind power. Fossil-fueled power plants, which wind turbines generally require to make up for their weather dependent intermittency, kill almost 20 times as many birds per gigawatt hour (GWh) of electricity according to Sovacool. Bird deaths due to other human activities and cats total between 797 million and 5.29 billion per year in the U.S. Additionally, while many studies concentrate on the analysis of bird deaths, few have been conducted on the reductions of bird births, which are the additional consequences of the various pollution sources that wind power partially mitigates.
Also in 2013, a meta-analysis by Scott Loss and others in the journal Biological Conservation found that the likely mean number of birds killed annually in the U.S by monopole tower wind turbines was 234,000. The authors acknowledged the larger number reported by Smallwood, but noted that Smallwood’s meta-analysis did not distinguish between types of wind turbine towers. The monopole towers used almost exclusively for new wind installations have mortality rates that "increase with increasing height of monopole turbines", but as of yet, it remains to be determined if increasingly taller monopole towers result in lower mortality per GWh.
In 2012, researchers reported that, based on their four-year radar tracking study of birds after construction of an offshore wind farm near Lincolnshire, that pink-footed geese migrating to the U.K. to overwinter altered their flight path to avoid the turbines.
In April 2019 the Bats and Wind Energy Cooperative released initial study results showing a 73% drop in bat fatalities when wind farm operations are stopped during low wind conditions, when bats are most active. Bats avoid radar transmitters, and placing microwave transmitters on wind turbine towers may reduce the number of bat collisions.

 

 

 

 

 

 
 
 

Member of IWOCE RC PBC 2019:



Professor

Roberto Di Cosmo


Definitions of different ecosystems


Research Proposal


Software Component Definition


History alternative energy


Enabling  technologies


Renewable energy vs non-renewable energy


Relatively new concepts for alternative energy


Research alternative energy


Disadvantages alternative energy



RC PBC
  www.redcross-pbc.org