IWOCE RC PBC 2019

 
Welcome to International Workshop on Open Component Ecosystems 

Plankton 



Plankton are the diverse collection of organisms that live in large bodies of water and are unable to swim against a current. The individual organisms constituting plankton are called plankters. They provide a crucial source of food to many large aquatic organisms, such as fish and whales.

Though many planktonic species are microscopic in size, plankton includes organisms over a wide range of sizes, including large organisms such as jellyfish. Technically the term does not include organisms on the surface of the water, which are called pleustonóor those that swim actively in the water, which are called nekton.
Within the plankton, holoplankton spend their entire life cycle as plankton (e.g. most algae, copepods, salps, and some jellyfish). By contrast, meroplankton are only planktic for part of their lives (usually the larval stage), and then graduate to either a nektic (swimming) or benthic (sea floor) existence. Examples of meroplankton include the larvae of sea urchins, starfish, crustaceans, marine worms, and most fish.
This scheme divides the plankton community into broad producer, consumer and recycler groups. However, determining the trophic level of many plankton is not always straightforward. For example, although most dinoflagellates are either photosynthetic producers or heterotrophic consumers, many species perform both roles. In this mixed trophic strategy ‚ known as mixotrophy ‚ organisms act as both producers and consumers, either at the same time or switching between modes of nutrition in response to ambient conditions. For instance, relying on photosynthesis for growth when nutrients and light are abundant, but switching to predation when growing conditions are poor. Recognition of the importance of mixotrophy as an ecological strategy is increasing, as well as the wider role this may play in marine biogeochemistry.
Plankton inhabit oceans, seas, lakes, ponds. Local abundance varies horizontally, vertically and seasonally. The primary cause of this variability is the availability of light. All plankton ecosystems are driven by the input of solar energy (but see chemosynthesis), confining primary production to surface waters, and to geographical regions and seasons having abundant light.
Despite significant macronutrient concentrations, some ocean regions are unproductive (so-called HNLC regions). The micronutrient iron is deficient in these regions, and adding it can lead to the formation of phytoplankton blooms. Iron primarily reaches the ocean through the deposition of dust on the sea surface. Paradoxically, oceanic areas adjacent to unproductive, arid land thus typically have abundant phytoplankton (e.g., the eastern Atlantic Ocean, where trade winds bring dust from the Sahara Desert in north Africa).
Aside from representing the bottom few levels of a food chain that supports commercially important fisheries, plankton ecosystems play a role in the biogeochemical cycles of many important chemical elements, including the ocean's carbon cycle.
Primarily by grazing on phytoplankton, zooplankton provide carbon to the planktic foodweb, either respiring it to provide metabolic energy, or upon death as biomass or detritus. Organic material tends to be denser than seawater, so it sinks into open ocean ecosystems away from the coastlines, transporting carbon along with it. This process, called the biological pump, is one reason that oceans constitute the largest carbon sink on Earth. However, it has been shown to be influenced by increments of temperature.
The effects of anthropogenic warming on the global population of phytoplankton is an area of active research. Changes in the vertical stratification of the water column, the rate of temperature-dependent biological reactions, and the atmospheric supply of nutrients are expected to have important impacts on future phytoplankton productivity. Additionally, changes in the mortality of phytoplankton due to rates of zooplankton grazing may be significant.

 

 

 

 

 

 
 
 

Member of IWOCE RC PBC 2019:



Professor

Roberto Di Cosmo


Definitions of different ecosystems


Research Proposal


Software Component Definition


History alternative energy


Enabling  technologies


Renewable energy vs non-renewable energy


Relatively new concepts for alternative energy


Research alternative energy


Disadvantages alternative energy



RC PBC
  www.redcross-pbc.org