IWOCE RC PBC 2019

 
Welcome to International Workshop on Open Component Ecosystems 

Research alternative energy



There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of alternative energy. This research spans several areas of focus across the alternative energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.

Mechanical energy associated with human activities such as blood circulation, respiration, walking, typing and running, is ubiquitous but usually wasted. It has attracted tremendous attention from researchers around the globe to find methods to scavenge such mechanical energies. The best solution currently is to use piezoelectric materials, which can generate flow of electrons when deformed. Various devices using piezoelectric materials have been built to scavenge mechanical energy. Considering that the piezoelectric constant of the material plays a critical role in the overall performance of a piezoelectric device, one critical research direction to improve device efficiency is to find new material of large piezoelectric response. Lead Magnesium Niobate-Lead Titanate (PMN-PT) is a next-generation piezoelectric material with super high piezoelectric constant when ideal composition and orientation are obtained. In 2012, PMN-PT Nanowires with a very high piezoelectric constant were fabricated by a hydro-thermal approach and then assembled into an energy-harvesting device. The record-high piezoelectric constant was further improved by the fabrication of a single-crystal PMN-PT nanobelt, which was then used as the essential building block for a piezoelectric nanogenerator.
Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs. The NREL solar program has a budget of around $75 million and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation. The budget for Sandia's solar division is unknown, however it accounts for a significant percentage of the laboratory's $2.4 billion budget.
In the 1970s NASA developed an analytical model to predict wind turbine power generation during high winds. Today, both Sandia National Laboratories and National Renewable Energy Laboratory have programs dedicated to wind research. Sandia's laboratory focuses on the advancement of materials, aerodynamics, and sensors. The NREL wind projects are centered on improving wind plant power production, reducing their capital costs, and making wind energy more cost effective overall.
Biomass can be regarded as "biological material" derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today; examples include forest residues (such as dead trees, branches and tree stumps), yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo, and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).
As the primary source of biofuels in North America, many organizations are conducting research in the area of ethanol production. On the Federal level, the USDA conducts a large amount of research regarding ethanol production in the United States. Much of this research is targeted toward the effect of ethanol production on domestic food markets.
The production of algae to harvest oil for biofuels has not yet been undertaken on a commercial scale, but feasibility studies have been conducted to arrive at the above yield estimate. In addition to its projected high yield, algaculture— unlike food crop-based biofuels — does not entail a decrease in food production, since it requires neither farmland nor fresh water. Many companies are pursuing algae bio-reactors for various purposes, including scaling up biofuels production to commercial levels.
Several groups in various sectors are conducting research on Jatropha curcas, a poisonous shrub-like tree that produces seeds considered by many to be a viable source of biofuels feedstock oil. Much of this research focuses on improving the overall per acre oil yield of Jatropha through advancements in genetics, soil science, and horticultural practices. SG Biofuels, a San Diego-based Jatropha developer, has used molecular breeding and biotechnology to produce elite hybrid seeds of Jatropha that show significant yield improvements over first generation varieties. The Center for Sustainable Energy Farming (CfSEF) is a Los Angeles-based non-profit research organization dedicated to Jatropha research in the areas of plant science, agronomy, and horticulture. Successful exploration of these disciplines is projected to increase Jatropha farm production yields by 200-300% in the next ten years.
Geothermal energy is produced by tapping into the heat within the earths crust. It is considered sustainable because that thermal energy is constantly replenished. However, the science of geothermal energy generation is still young and developing economic viability. Several entities, such as the National Renewable Energy Laboratory and Sandia National Laboratories are conducting research toward the goal of establishing a proven science around geothermal energy. The International Centre for Geothermal Research (IGC), a German geosciences research organization, is largely focused on geothermal energy development research.

 

 

 

 

 

 
 
 

Member of IWOCE RC PBC 2019:



Professor

Roberto Di Cosmo


Definitions of different ecosystems


Research Proposal


Software Component Definition


History alternative energy


Enabling  technologies


Renewable energy vs non-renewable energy


Relatively new concepts for alternative energy


Research alternative energy


Disadvantages alternative energy



RC PBC
  www.redcross-pbc.org